Chemical
Engineering
Journal

www.elsevier.com/locate/cej

Ve

ELSEVIER Chemical Engineering Journal 108 (2005) 91-99

The extended Kalman filter as a noise modulator for continuous yeast
cultures under monotonic, oscillating and chaotic condiffons

Pratap R. Patnaik

Mathematical Modeling Unit, Institute of Microbial Technology, Sector 39-A, Chandigarh 160036, India

Received 12 May 2004; received in revised form 10 January 2005; accepted 12 January 2005

Abstract

The extended Kalman filter (EKF) is commonly used to filter out the inflow of noise into biological reactors. Its usefulness for bioreactors
with monotonic outputs is well established. More recently, the EKF has been shown to be able to rescue stable periodic oscillations that have
been distorted by noise. This study extends the use of the EKF to microbial oscillations that become chaotic under the influence of noise.
As measured by the Lyapunov exponents of the noise-free and noise-filtered concentration profiles of a continuousSadithiaroimyces
cerevisiagthe filter is effective in recovering noise-free sustained oscillations from noise-induced chaos, but is less satisfactory for a culture
with both deterministic and stochastic chaos. Other kinds of filters, employing artificial intelligence, are recommended in this case.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction of noise simultaneously affect a measurement. For instance,
the dosing of alkali or acid for pH control and the flow of
Under realistic conditions representative of pilot- and a heating or cooling stream for temperature control are in-
industrial-scale operations, continuous cultures of microor- fluenced by noise from the environment as well as that from
ganisms are usually under the influence of noise from two the feedback variables which control the switching off or on
main sources. One source is the measurement noise assocef these streams. In spite these complexities and their poten-
ated with the process sensor signals (pH, temperature, speetally harmful effects on microbial behavior, continuous or
of agitation, flow rates, etc.). These are grouped into one noisefed-batch cultivation is chosen in many cage] because
vector with a particular covariance matrix. The second main of economic, kinetic and physiological benefits.
source of noise is in the environment, and this usually en-  For proper control of a fermentation process, raw noisy
ters a cultivation vessel or bioreactor through a feed stream.data have to be filtered and smoothened to enable optimiza-
Environmental noise is less predictable and more difficult to tion and control actions to be applied. Although there are
characterize than measurement noise. Under open loop condifferent kinds of noise filterg3], the Kalman filter has been
trol, the two sources of noise do not interact. However, closed widely used because of its robustness, versatility and effec-
loop is often preferred for bioreactdr; then the collective  tiveness. A detailed account of its theory is outside the scope
impact of measurement noise and inflow noise can seriouslyof this work and is available elsewhg#. Although the most
injure a fermentation. Although the subject of this study is a rigorous test of the Kalman filter and its modified version, the
continuous culture, batch fermentations are not totally insu- extended Kalman filter (EKF), would be in a real production-
lated from noise. They provide examples where both kinds scale operation, commercial and proprietary restrictions pre-
vent the disclosure of the results of such applications. In view
S MTECH communication no. 034/2004. of this difficulty, most studies have applied the Kalman fil-
* Tel.: +91 172 2690223 fax: +91 172 22690585/632. ter either to laboratory-scale bioreactors or to data from such
E-mail addresspratap@imtech.res.in. reactors ‘corrupted’ later by computer-generated noise mim-
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Nomenclature

intra-cellular storage carbohydrate concentr
tion (gL~1)

dilution rate (1)

key enzyme concentration farth pathway
(gg~! biomass)

ethanol concentration in the bioreactor (gt
glucose concentration in the bioreactor (gt).
glucose concentration in the feed strea
(gL

oxygen mass transfer coefficient )
Michaelis constant for-th pathway (g 1)

Ko,, Ko, oxidative pathway oxygen saturation cor

stants (mg £1)

dissolved oxygen concentration in the biorea
tor (mg L™1)

dissolved oxygen solubility limit (mgt?!)
biomass growth rate arth pathway (')
carbon substrate concentrationifdih pathway
QL™

elapsed time (h)

cybernetic variable controlling key enzymg
synthesis foi-th pathway

cybernetic variable controlling key enzyme ag
tivity for i-th pathway
biomass concentration
(gL

yield coefficient  for
(g biomass g? substrate)

in the bioreactd

i-th  pathway

Greek letters

specific enzyme synthesis rate {h
constitutive enzyme synthesis rate (gth
specific enzyme degradation rate th
stoichiometric coefficient for-th carbon sub-
strate

stoichiometric coefficients for storage carbd
hydrate synthesis and degradation

spelcific growth rate of biomass bth substrate
(=)

maximum specific growth rate a+th substrate
(h™

m

=

icking industrial conditions. Despite these limitations, a vari-

While some of these studies considered either explicitly
the intrusion of external noise or implicitly noise that is in-
trinsic to a sensory device, they have not accounted for the
simultaneous effects of both. However, as mentioned before,
both sources of noise can be present at the same time, and
their cumulative effect on a cultivation process may be more
injurious than just an additive effect. For instance, if the two
sources of noise resonate with each other and/or with the
fermentation process, they may drive a smoothly functioning
monotonic culture to chaotic oscillations or initiate run-away
behavior[10-12] Although there are a number of observa-
tions of the detrimental effects of noise on cellular processes,
only recently have there been efforts toward quantitative anal-
yses of these effects.

Coupling of noise from the environment and from mea-
suring devices can seriously undermine cell viability, reactor
stability, productivity and selectivitj11,13,14] besides the
possibilities of chaotic oscillations and run-away behavior re-
ferred to earlief10-12] Although the studies demonstrating
these effects cover different microorganisms and different
modes of bioreactor operation, they consider only fermen-
tations which generate monotonic profiles with time. Thus,
they exclude many important fermentations that show time-
dependent oscillations in continuous cultures. Two of the
best known in this class alymomonas mobilandSaccha-
romyces cerevisiaavith the latter being possibly the mostin-
tensively studied and industrially important. So, in this work
we investigate the ability of an extended Kalman filter to
recreate the original noise-free behavior in continuous cul-
tures ofS. cerevisiaavhen the deterministic profiles are (a)
monotonic or (b) oscillating or (c) chaotic.

2. Continuous cultures ofS. cerevisiae

In view of its industrial importance and metabolic com-
plexity, the yeastS. cerevisiachas been studied by bio-
chemists, microbiologists and biochemical engineers. Bio-
chemists and microbiologists have unraveled the mechanisms
and causes of oscillations intrinsic to the cells. These include
features such as cell synchrofiys], the presence of hydro-
gen sulfideg[16] and oxidative phosphorylatioid 7]. While
revealing the metabolic complexities that are at the core of
autonomous oscillations, these studies have also underlined
the difficulties in formulating comprehensive models that are
sufficiently simple to manipulate in automatic control sys-
tems.

So, biochemical engineers have tried to blend judiciously

ety of successful applications establishes the Kalman filter aslumped metabolic models with bioreactor models thatinclude
a useful and reliable technique for noise-affected microbial operational features such as the flow rate (or dilution rate),
cultures. These applications cover on-line bioreactor moni- the rate of supply of oxygen and spatial heterogeneity. The
toring in conjunction with other methods], estimation of
respiratory coefficients and specific growth rates of insect Jones and Kompala0] are of this kind. While the former two

cultures[6,7], intracellular protein estimations in plant cell
cultures[8], and the development of a time-optimal control

system for waste-water treatmég8y.

models proposed by Beuse effaB], Cazzador et aJ19] and

[18,19] are based on proposed mechanisms and a chemical
kinetic approach, Jones and Kompala adopted a cybernetic
approach.
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In the context of bioreactors, cybernetic modeling estab- is negative for stable or dissipating systems and positive for
lishes a formal framework according to the established evo- chaotic systems. The effectiveness of the Lyapunov exponent
lutionary concept that microorganisms try to follow those fordetecting biological chaos has been demonstrated recently
metabolic pathways that are most favorable to their survival [26] for S. cerevisiaelt may be noted that the chaotic plots
under the prevailing conditions. It also hypothesizes that liv- generated at this stage are deterministic since no noise has
ing cells have at least some rudimentary ‘intelligence’ that yet been introduced.
enables them to ‘remember’ their past experiences and ac- Now, for each of the three types of profiles, Gaussian noise
cordingly react to current circumstances. Therefore, two cul- with an adjustable variance and a mean equal to the current
tures of the same organism but with different histories are deterministic value of the variable of interest was added to
likely to respond differently to the same conditions. Cyber- the Jones and Kompala0] model, which was then solved
netic modeling has been particularly useful in portraying the again to obtain the noise-distorted profiles. Adjustability of
dynamic behavior of fermentations with more than one kind the variance implies here that this was increased stepwise
of cells and/or more than one substrgg#,22]. until the monotonic or oscillating profiles became chaotic.

Owing to its simplicity, physiological closeness to known
metabolic concepts, and its ability to depict the observed
excursions between different kinds of oscillatory and non- 3. Theory and application of the Kalman filter
oscillatory behavior under changing conditions, the Jones-

Kompala mode[20] was used here and in a preceding study ~ The Kalman filter is a set of mathematical equations that

[23] to generate data mimicking a noise-affected fermenta- provides an efficient recursive solution of the least-squares
tion and to study the performance of an extended Kalman type. The filter can provide estimations of past, present and
filter. future states of a system even when a precise model is not

Jones and Kompal@0] identified three metabolic path-  known. This feature is useful for microbial processes under
ways by whichS. cerevisiaenay utilize the available carbon  nonideal (realistic) conditions because models developed on
sources: glucose fermentation, ethanol oxidation and glucoselaboratory data may become inapplicable or imprecise under
oxidation. Depending on its past history and the current con- the influence of disturbances and spatial gradifh&7].
ditions, the culture may follow either one pathway or two or The basic Kalman filter addresses the problem of trying
more pathways to different extents. The current conditions to estimate the state of a discrete-time controlled process
are mainly the dilution rate, the gas—liquid mass transfer rate that is governed by the linear difference equation:
of oxygen and the degree of mixing of the broth. Whenthereis _  —_ — _
insufficient glucoseS. cerevisiashifts to ethanol asthe main ¢ = Axp—1+ Bug + w1 @)
carbon source; while ethanol is synthesized under anaerobiGyith a measurement vector that follows:
conditionsin batch cultures, itcan be formedincertainranges = _
of the oxygen mass transfer rate in continuous cult[24k 2k = Hxp + vk 2)

Jones and Kompalz0] determined that with increasing In these and later equations, lower case letters with overbars

d“”“or? rate the dgterministic (noise-free) oscillations de- denote vectors while similar capital letters denote matrices.
cayed in both amplitude and frequency, whereas the 0Xygeng ., a1 do not have overbark— 1) is the current instant of

mass transfer coefficient had the opposite effect. Explorat|on,[ime and k is the point one time-step aheag andu;, repre-

?r: atl v(\jnder r:_nge of ttr?ese tW(:. manlpl:jlited vangblefs Shows gont the process noise and measurement noise respectively.
at, depending on the operating conditions, NOISE-Iree Con-  p ;i g studieR7—-29]show thatw; andv; may be rep-

t|_nuous culturgs of. cerevisiaanay d|spla_1y one of three . resented as white noise with normal probability distributions:
kinds of behavior: monotonic or stable oscillations or chaotic

oscillations. When there is noise of sufficiently large intensity p(w) ~ N(0O, Q) 3)

in the substrate feed stream, all three forms of fermentation —

become chaotic. An effective and useful extended Kalman ” (v) ~ N(O. R) )

filter should be able to restore SUbStantia”y the Original noise- Whereé andE are the respective covariance matrices.

free performance in all three cases. Since Eq(1) applies to linear systems whereas many fer-
Representative monotonic and stable oscillating profiles menation (and other biological) processes show a nonlinear

were chosen from those determined by Jones and Kompalayehavior, the extended Kalman filter (EKF) was developed.

[20]. In each case, two sets of profiles were chosen, one for|t applies to any nonlinear difference equation of the form:
the dilution rate and the other for the gas—liquid oxygen mass _ o

transfer coefficient. Since Jones and Kompala did not present‘c = S k-1, ug, wi—1) 5)
any chaotic deterministic profiles, these were generated by ei-— _ - —

. I . : 2k = h(xk, vi) (6)
ther reducing the dilution rate or increasing the mass transfer
coefficient. The onset of chaos was detected by calculatingIn principle, the EKF determines the current estimates of
the Lyapunov exponent at each stage. This exponent, whose set of variables by linearizing the estimation around the

basis and calculation have been described elsewRéie current estimates using the partial derivatives of the process
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and measurement functions evaluated at the (known) previousTable 1
instant of time. The detailed theory and equations are given in Values of the parametef20]

the literaturg4,30,31] Note that both Eq¢1) and (2)and(5) Parameter Value
and (6) in pairs, are in discrete form whereas most biological « (h-1) 1.0
processes are described by continuous models. This is not am’(gh™) 0.1
impediment because, in practice, data are sampled at discreté ") 0.2
points in time. Since the EKF allows any arbitrary variation * Egg 1; 2'8
in the sampling interval, this may be varied according to the Zz (g g:l) 03
nature of the process. For instance, the interval may be made.; na (h=1) 0.44
inversely proportional to the current concentration gradient, r2max(h) 0.32
thus generating closely spaced data when the variations aresmax(n %) 0.31
steep and more widely separated points during mild variationsii Eg 3513 (1)'(2)27
[14] va (@) 2.087
Earlier studieq14,29,32]have suggested that the feed ¢,(@gg™?) 0.95
stream is a major carrier of noise in continuous and fed-batchD (h~?) 0.16
fermentations, and white noise is the principal component of o (9 ':;1) 28.0
the observed fluctuations. So, to generate data simulating a:lea(éhL,i) éioo'o
noise-influenced oscillating culture, the equations in the Ap- ¢, 1 -1 0.02
pendix were solved with the parameter values used by Jones; (gL 0.001
and Kompalg20] (seeTable ) and white noise specified Ko, (mgL™") 0.0001
by 0 andR. Since the measurement covariaitgertainsto ~ Kos (Mg 51_1) 0.0001
measurement noise in the unfiltered process, this is measure ) ((gqgg_ll‘) ) g'ie
prior to the operation of the filter. Then the application of the v, (441 074
filter determines how much this noise has been reduced. Thev; (gg2) 0.50

process noise covarian@ is more difficult to determine

since typically we do not have the ability to observe the pro- _

cesswe are estimating. So, based on previous stifj&30] equation for the Kalman gaiki; also gets updated with each

0 was set initially toQq4 = ([0.0001. ...... 0.0001]") andR iteration, thereby speeding up convergence and improving the

to 0.003, wherel is the identity matrix and) is a diagonal accuracy of estimations. As explained before, data from the

matrix. Note that these are starting values and are updated it-simulated profiles were sampled at intervals inversely pro-

eratively until the filtered profiles are within acceptable limits  portional to the local concentration gradients, and the tuning

of the noise-free profiles. Now, the model of Jones and Kom- of the EKF was updated over successive intervals according

pala[20] has eight concentrations, whose rates of change areto the format inFig. 1

expressed by Eq$A.6)—(A.11) So Q is an (8x 8) matrix.

Since the glucose and oxygen feed streams are the only in-

flows to the bioreactor, environmental noise was considered4. Results and discussion

to be present in these two flow rates, thus maktray(2x 2)

matrix. Both O and R get updated recursively as shown in As mentioned earlier, representative values of the dilu-

Fig. 1 [31] tion rate D) and the gas—liquid mass transfer rate of oxygen
Apart from its applicability to a nonlinear process, an im- (k_a) were chosen so as to have for each manipulated variable

portant distinction between the EKF and the basic discrete a monotonic, a stable oscillating and a chaotically oscillat-

Kalman filter is that in the former case the Jacolfirin the ing response of the fermentation. These values were 0.05,

Measurement update(*“Correct”)

Time update (“Predict”™)

1. Compute the Kalman gain

1. Project the state ahead — T — T T,—l
) > K =P Hi (HP Hg + ViR Vi)

Xk =f(X g1 uk.0)

2. Project the errorcovariance ahead 2. Update the estimate with measurementzk
- 110] < Xk = Xk + Kk(zg — h(x\,0))

= T T
P = AgPr 1Ak + WEQg Wi

3. Update the errorcovariance

Pe=(1-KgH)Pyg

- _ X and Py
Initial estimates for

Fig. 1. Computation procedure of the extended Kalman fi&}.
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0.13 and 0.20h! for the dilution rate, and 175, 255 and Stability after noise had disturbed the process to chaotic os-
375h 1 for the mass transfer coefficient. The three dilution Cillation.

rates generate chaotic oscillations, stable periodic oscillations ~ Figs. 2 and 3ogether depict 24 sets of bar plots cover-
and monotonic behavior respectively. These types of profilesing three dilution rates and three mass transfer coefficients.
are reversed for the mass transfer coefficients, i.e. 3¥5h Twelve of these have been labeled in order to draw closer
results in a chaotic response. attention. For low dilution rates (cases 1, 2, 4 and Bitn 2)

Although the model of Jones and Komp§28] has eight and high mass transfer coefficients (cases 7, 9, 11 and 12
state variables, results for four key concentrations are shownin Fig. 3 there is deterministic chaos since the exponents
and discussed here, similar to a recent s{@8y. This choice for a fermentation without noise are also positive. In these
also takes care of the internal storage carbohydrate, whosecases, an EKF cannot be expected to establish stable oscilla-
exponents were similar to those for ethanol. Lyapunov ex- tions. However, its limitation is revealed more significantly
ponents computed at three dilution rat€gy( 2) show that  in four other cases (3, 6, 8 and 10), where the Lyapunov ex-
at a low dilution rate (0.05H), the fermentation remains  ponents of the deterministic oscillations are close to zero.
chaotic even after applying the EKF. This is expected becauseSuch a system is marginally stable and a disturbance may
the noise-free fermentation itself had deterministic chaos. displace the trajectories such that they either stay at a con-
However, for the two larger dilution rates the EKF has ei- Stant distance from the original noise-free paths or diverge
ther fully stabilized the process or has substantially reducedinto a chaotic regim¢25]. While the former possibility has
noise-induced chaotic behavior. been observed for monotonic profiles, the Lyapunov expo-

A similar performance is seen with respect to the mass nents determined here suggest that oscillating trajectories are
transfer coefficient for oxygerk(a). At k.a=375h1, the more likely to degenerate into chaos. The difference between
culture remains chaotic, as it was before the influx of noise. the exponents for a noise-free and a noise-filtered system pro-
However, as for the dilution rate, stable performance has beenvides a measure of this tendency. The resiftg.(4) show
restored in all the cases except two. Including the results (notthat for the four cases (3, 6, 8 and 10) where the noise-free
shown) for internal carbohydrate, these observations showculture had steady oscillations with a constant time period,
that in 8 out of 10 cases where the noise-free culture wasthe Lyapunov exponents with an EKF are within 20% of
stable (either monotonic or oscillating) the EKF has restored their original values. However, the EKF has been less effec-
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Fig. 2. Lyapunov exponents for a noise-affected fermentation without and with an EKF at dilution rates generating D@15 fr1), oscillating
(D=0.13h1) and monotonic ) =0.20 1) behavior without noise. In each set of bars, the one on the right is for a fermentation without noise, the bar
on the left is with unfiltered noise, and the middle bar pertains to a fermentation with noise filtered by an EKF.
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Fig. 3. Lyapunov exponents for a noise-affected fermentation without and with an EKF at mass transfer coefficients generating nkpaetaisH 1),
oscillating _a=255h1) and chaotick a= 375 h1) behavior without noise. In each set of bars, the one on the right is for a fermentation without noise, the
bar on the left is with unfiltered noise, and the middle bar pertains to a fermentation with noise filtered by an EKF.

tive in distinguishing between deterministic chaos and noise- high concentrations. This overall inference is however em-
induced chaos, the differences here being about 40-65%. Thédedded in more complex phenomena involving the cell cycle,
largest differences are for the dissolved oxygen concentra-the metabolic pathways, the population distribution and in-
tion, which are much smaller in magnitude than the other terfacial oxygen transf¢i5,17,20,34]Because a model that
variables[15,18,20] This suggests that low concentrations includes all these features becomes too cumbersome or com-
are more difficult to rescue from the effects of noise than plex, engineering analyses are based, as stated in S@ction
on judiciously simplified modeld.8—20] Even such a model
70 has indicated here that an algorithmic filter such as an EKF

- may not ‘understand’ adequately the complexities of a noise-
affected microbial process. In such situations, filters that do
not depend on a process model may perform better. These
are the so-called ‘intelligent’ filters, which rely on methods
- such fuzzy logic, neural networks and expert systems. For
example, an auto-associative neural filter is better than an
EKF and other algorithmic filters in restoring determinis-
tic oscillations from noise-distorted non-chaotic oscillations
[35]. Nevertheless, neural filters also have limitations and
sometimes a combination of the two may be preferable.

These differences in the effectiveness of an EKF are also
reflected in its ability to converge to the best performance
(i.e. as close as possible to that of a noise-free fermentation)
12 3 4 5 6 7 8 9 101112 through successive iterations. This may be characterized by

the mean sum of squares of errors, defined as
Fig. 4. Differences between the Lyapunov exponents of the noise-free
and noise-filtered fermentations for each of the twelve cases labeled in ZN (Xe. _ XP)Z
Figs. 2 and 3Cases 1, 2, 4, 5, 7, 9, 11 and 12 pertain to deterministic MSSE(%)= J=1 )7« 100 (7)
chaos. N

% Difference in Lyapunov exponent
n w B (3] (=]
(=] o (=] o (=)
]
1
\

—
o
T
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WhereX? andX Fj’ are respectively the ‘experimental’ (or sim-
ulated) and predicted values of a variable afjtttesampling
point in time, andN is the total number of data. Since, as
revealed by their Lyapunov exponentsds. 3 and % the
biomass and ethanol concentrations are distorted by noise to
comparable extents and more severely than glucose and dis-
solved oxygen concentrations, either of the former two may
be used to compare the progress of the MSSE for different
situations. This comparisorig. 5 shows that the EKF is
most efficient for deterministic monotonic profiles, less so for
steady oscillations and, as expected, the least efficient when
both deterministic and noise-induced chaos are present. Nev-
ertheless, it is encouraging to note that an EKF can restore
nearly noise-free performance even in the last case.

It may be recalled that the Lyapunov exponent is a mea-
sure of the mean deviation between two trajectories. So, to
determine whether the deviations without and with an EKF
are correlated, Pearson’s product moment correlations wer

tween two variables X and Y is defined as
cov(X,Y)

MSSE (%)

100

—e— Monotonic
—a— QOscillating
—&— Chaotic

200 400

600

lteration number

800

1000

97

Fig. 5. Convergence profiles for an EKF applied separately to a fermentation

A - - €under three kinds of deterministic behavior. MSSE: mean sum of squares of
calculated as described by FisH86]. The correlation be-  errors.

Pry = ——o— (8) every concentration has an unfiltered value and a filtered
var(X)var() value, the correlation coefficients between different concen-
where var stands for variance and cov for covariance. trations generate the matrix presentedrakle 2 Since the

In our applicationsX is the set of noise-free values of bioreactor may have any one of three modes of determinis-
any concentration and the set of noise-affected values, ei- tic operation—monotonic, oscillating and chaotic—there are
ther without or with an EKF. Since, at each sampling time, correlation coefficients between each pair of variables.

Table 2
Pearson’s product moment correlation coefficients between different concentrations in their unfiltered and filtered states
Variable Modé Glucose Biomass Dissolved oxygen Ethanol
Unfiltered Filtered Unfiltered Filtered Unfiltered Filtered Unfiltered Filtered
Glucose (unfiltered) m 1.0 0.993 0.139 0.125 0.128 0.120 0.149 0.138
o 1.0 0.985 0.123 0.114 0.119 0.111 0.133 0.119
c 1.0 0.976 0.109 0.101 0.112 0.103 0.124 0.101
Glucose (filtered) m 0.990 1.0 0.121 0.127 0.122 0.130 0.140 0.147
o] 0.983 1.0 0.113 0.121 0.116 0.125 0.118 0.130
c 0.976 1.0 0.106 0.114 0.110 0.117 0.106 0.118
Biomass (unfiltered) m 0.139 0.121 1.0 0.999 0.141 0.132 0.187 0.145
o] 0.123 0.113 1.0 0.999 0.129 0.121 0.175 0.133
c 0.109 0.106 1.0 0.999 0.117 0.113 0.166 0.122
Biomass (filtered) m 0.125 0.127 0.999 1.0 0.138 0.151 0.182 0.194
0 0.114 0.121 0.999 1.0 0.123 0.139 0.173 0.183
c 0.101 0.114 0.999 1.0 0.109 0.126 0.162 0.170
Dissolved oxygen (unfiltered) m 0.128 0.122 0.141 0.138 1.0 0.991 0.159 0.137
o 0.119 0.116 0.129 0.123 1.0 0.986 0.145 0.124
c 0.112 0.110 0.117 0.109 1.0 0.979 0.133 0.111
Dissolved oxygen (filtered) m 0.120 0.130 0.132 0.151 0.991 1.0 0.143 0.163
o] 0.111 0.125 0.121 0.139 0.986 1.0 0.132 0.150
c 0.103 0.117 0.113 0.126 0.979 1.0 0.121 0.139
Ethanol (unfiltered) m 0.149 0.140 0.187 0.182 0.159 0.143 1.0 0.993
0 0.133 0.118 0.175 0.173 0.145 0.132 1.0 0.989
c 0.124 0.106 0.166 0.162 0.133 0.121 1.0 0.984
Ethanol (filtered) m 0.138 0.147 0.145 0.194 0.137 0.163 0.993 1.0
o 0.119 0.130 0.133 0.183 0.124 0.150 0.989 1.0
c 0.101 0.118 0.122 0.170 0.111 0.139 0.984 1.0

2 m: monotonic; o: oscillating; c: chaotic.
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The presence of unity in all elements of three-vectors along be an answer. To overcome some of the limitations of ‘in-
the diagonal is expected since any variable will be fully cor- telligent’ filters, they may be combined with partial mathe-
related with itself. Large correlation coefficients approach- matical descriptions and algorithmic filters to create hybrid
ing unity also connect unfiltered and filtered values of the filters.
same variable. This too is physically plausible, given that
the pair of variables represent the same concentration. All
other coefficients are small, indicating the absence of any Appendix A. The cybernetic model of Jones and
significant correlation between one concentration and an- Kompala [20]
other. These small correlations corroborate the independence
of the concentrations in the Jones and Komgpa§ model, Depending on the prevailing conditiorss,cerevisiaenay
and thus Eqs(A.6)—(A.11)are also independent. Finally, it  follow any one of three metabolic pathways. The rate of
may be observed that for any variable, its unfiltered value growthr; along each pathway follows modified Monod ki-
has a higher correlation with the unfiltered value of another netics, as given below:
variable than with the filtered value of the latter, regardless  Glucose fermentation
whether the fermentation displays monotonic or oscillating or < G )

chaotic behavior. The same pattern also occurs for all filteredr1 = puiex X+ G (A1)
variables. This interesting segregation into two groups with 1+
internal consistency strengthens the reliability of the EKF in Ethanol oxidation
different situations, but it is difficult to attribute a stronger E 0
i i ro = uoe A.2
interpretation. 2 = [2e2 (Kz n E> <K02 m 0) (A.2)
Glucose oxidation
5. Conclusions G 19}
r3 = u3es ( ) ( ) (A.3)
K3+ G Ko, + O

For continuous fermentation 8. cerevisiaeinder deter-
ministic conditions that generate stable periodic oscillations, The pathways are not mutually exclusive and, at a given
the EKF has been shown recently to be effective in filtering instant, the organism may follow two or more pathways
out noise from the feed stream such that approximately noise-at different rates. Each pathway is controlled by a key
free oscillations can be recovered. Previous studies had al-enzymee;, with synthesis rate and activity v;, which
ready proved this effectiveness for fermentations with mono- follow:

tonic time-domain concentration profiles. So, this study has = i (A.4)
extended earlier work to sustained oscillations that are driven 2ot
to chaos under the influence of noise. .

Computer-generated data from an experimentally vali- v; = : (A.5)

i ; max;r
dated cybernetic model of a continuous culture were sub- i’

jected to Gaussian noise in the substrate feed stream. Thre&Vith Egs.(A.1)—(A.5), the mass balances for a continuous
sets of data were generated — monotonic, oscillating andflow bioreactor may be written as follows:

(deterministic) chaotic — by choosing suitable values of the

dilution rate or the gas—liquid mass tra.nsfer coefficient for d_X _ (Z(rivi) _ D) X (A.6)
oxygen. To each set, an EKF was applied and the extent of dr -

recovery of the performance prior to the intrusion of noise

was measured by calculating the Lyapunov exponents relat- 4 rvy  ravs
ing pairs of concentration profiles without noise and with P (Go—G)D — (T + T) X
filtered noise. ! 3
The EKF restored nearly noise-free performance in eight B <Cd—X 4 Xd_C> A7)
out of ten cases where this was either monotonic or oscillating 4 dr dr '
periodically. For the two exceptional cases, the Lyapunov ex-
ponents of the noise-filtered fermentations were within 20% yp rUL rovp
of those of the corresponding noise-free cultures. However, e —DE + <¢1T - T) X (A.8)
the EKF was less effective in distinguishing noise-induced 1 2
chaos from deterministic chaos, to filter out only the for- dO rav2 r3v3
mer. This limitation may lie in the process model itself, on gr — kLa(0" = 0) - <¢2Y_2 + ‘0373) X (A-9)

which the EKF depends. Since very complex models are
not desirable and simple models may be inadequate underde; ( S;

nonideal conditions, ‘intelligent’ filters based on expert sys- "5, — i K+
tems and neural networks that do not require a model may

)— Z(rjvj)—i—ﬁ e +a* (A.10)
J
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dc

g = Varsvs (yrrivy + yor2v2)C — Z(Vjv./)c (A.11)

J

Inclusion of the termx” in the enzyme synthesis Egp.10)
is based on Turner and Ramkrist{8&], who have shown its

importance in predicting the induction of enzymes that have
been repressed for long durations. The specific growth rates

thus also include” in the model:

Mi,max + ﬁ)

A.12
o+ o* ( )

Mni = Mi,max(

Eq.(A.11)expresses the rate of change of internal storage car-

bohydrates that are an integral part of the metabdlizh84]
Theg; are the stoichiometric coefficients for different sub-
stratesS, and y; are similar coefficients for carbohydrate

synthesis and consumption by the cells. Jones and Kompala

[20] may be consulted for a full discussion of the model. A
point not clarified there is the identification §f, S andSs.
Reference to Eq$A.1)—(A.3) shows that; =G, S =E and
S3=G. This identification is needed to solve the model. The
values of the parameters are listediable 1
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