
Chemical Engineering Journal 108 (2005) 91–99

The extended Kalman filter as a noise modulator for continuous yeast
cultures under monotonic, oscillating and chaotic conditions�
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Abstract

The extended Kalman filter (EKF) is commonly used to filter out the inflow of noise into biological reactors. Its usefulness for bioreactors
with monotonic outputs is well established. More recently, the EKF has been shown to be able to rescue stable periodic oscillations that have
been distorted by noise. This study extends the use of the EKF to microbial oscillations that become chaotic under the influence of noise.
As measured by the Lyapunov exponents of the noise-free and noise-filtered concentration profiles of a continuous culture ofSaccharomyces
cerevisiae, the filter is effective in recovering noise-free sustained oscillations from noise-induced chaos, but is less satisfactory for a culture
with both deterministic and stochastic chaos. Other kinds of filters, employing artificial intelligence, are recommended in this case.
©

K

1

i
g
m
a
o
v
s
t
E
c
t
l
i
i
c
l

ance,
of

e in-
from
r on
oten-
or

e

oisy
miza-
are
n
ffec-
cope
t
the

ion-
pre-

view
fil-

1
d

2005 Elsevier B.V. All rights reserved.

eywords:Extended Kalman filter; Continuous culture; Inflow noise; Oscillations; Chaos

. Introduction

Under realistic conditions representative of pilot- and
ndustrial-scale operations, continuous cultures of microor-
anisms are usually under the influence of noise from two
ain sources. One source is the measurement noise associ-
ted with the process sensor signals (pH, temperature, speed
f agitation, flow rates, etc.). These are grouped into one noise
ector with a particular covariance matrix. The second main
ource of noise is in the environment, and this usually en-
ers a cultivation vessel or bioreactor through a feed stream.
nvironmental noise is less predictable and more difficult to
haracterize than measurement noise. Under open loop con-
rol, the two sources of noise do not interact. However, closed
oop is often preferred for bioreactors[1]; then the collective
mpact of measurement noise and inflow noise can seriously
njure a fermentation. Although the subject of this study is a
ontinuous culture, batch fermentations are not totally insu-
ated from noise. They provide examples where both kinds

� IMTECH communication no. 034/2004.

of noise simultaneously affect a measurement. For inst
the dosing of alkali or acid for pH control and the flow
a heating or cooling stream for temperature control ar
fluenced by noise from the environment as well as that
the feedback variables which control the switching off o
of these streams. In spite these complexities and their p
tially harmful effects on microbial behavior, continuous
fed-batch cultivation is chosen in many cases[1,2] becaus
of economic, kinetic and physiological benefits.

For proper control of a fermentation process, raw n
data have to be filtered and smoothened to enable opti
tion and control actions to be applied. Although there
different kinds of noise filters[3], the Kalman filter has bee
widely used because of its robustness, versatility and e
tiveness. A detailed account of its theory is outside the s
of this work and is available elsewhere[4]. Although the mos
rigorous test of the Kalman filter and its modified version,
extended Kalman filter (EKF), would be in a real product
scale operation, commercial and proprietary restrictions
vent the disclosure of the results of such applications. In
of this difficulty, most studies have applied the Kalman
∗ Tel.: +91 172 2690223; fax: +91 172 22690585/632.
E-mail address:pratap@imtech.res.in.

ter either to laboratory-scale bioreactors or to data from such
reactors ‘corrupted’ later by computer-generated noise mim-
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Nomenclature

C intra-cellular storage carbohydrate concentra-
tion (g L−1)

D dilution rate (h−1)
ei key enzyme concentration fori-th pathway

(g g−1 biomass)
E ethanol concentration in the bioreactor (g L−1)
G glucose concentration in the bioreactor (g L−1)
G0 glucose concentration in the feed stream

(g L−1)
kLa oxygen mass transfer coefficient (h−1)
K i Michaelis constant fori-th pathway (g L−1)
KO2,KO3 oxidative pathway oxygen saturation con-

stants (mg L−1)
O dissolved oxygen concentration in the bioreac-

tor (mg L−1)
O* dissolved oxygen solubility limit (mg L−1)
ri biomass growth rate oni-th pathway (h−1)
Si carbon substrate concentration fori-th pathway

(g L−1)
t elapsed time (h)
ui cybernetic variable controlling key enzyme

synthesis fori-th pathway
vi cybernetic variable controlling key enzyme ac-

tivity for i-th pathway
X biomass concentration in the bioreactor

(g L−1)
Yi yield coefficient for i-th pathway

(g biomass g−1 substrate)

Greek letters
α specific enzyme synthesis rate (h−1)
α* constitutive enzyme synthesis rate (g h−1)
β specific enzyme degradation rate (h−1)
ϕi stoichiometric coefficient fori-th carbon sub-

strate
γ i stoichiometric coefficients for storage carbo-

hydrate synthesis and degradation
µi specific growth rate of biomass oni-th substrate

(h−1)
µi,max maximum specific growth rate oni-th substrate

(h−1)

icking industrial conditions. Despite these limitations, a vari-
ety of successful applications establishes the Kalman filter as
a useful and reliable technique for noise-affected microbial
cultures. These applications cover on-line bioreactor moni-
toring in conjunction with other methods[5], estimation of
respiratory coefficients and specific growth rates of insect
cultures[6,7], intracellular protein estimations in plant cell
cultures[8], and the development of a time-optimal control
system for waste-water treatment[9].

While some of these studies considered either explicitly
the intrusion of external noise or implicitly noise that is in-
trinsic to a sensory device, they have not accounted for the
simultaneous effects of both. However, as mentioned before,
both sources of noise can be present at the same time, and
their cumulative effect on a cultivation process may be more
injurious than just an additive effect. For instance, if the two
sources of noise resonate with each other and/or with the
fermentation process, they may drive a smoothly functioning
monotonic culture to chaotic oscillations or initiate run-away
behavior[10–12]. Although there are a number of observa-
tions of the detrimental effects of noise on cellular processes,
only recently have there been efforts toward quantitative anal-
yses of these effects.

Coupling of noise from the environment and from mea-
suring devices can seriously undermine cell viability, reactor
stability, productivity and selectivity[11,13,14], besides the
possibilities of chaotic oscillations and run-away behavior re-
ferred to earlier[10–12]. Although the studies demonstrating
these effects cover different microorganisms and different
modes of bioreactor operation, they consider only fermen-
tations which generate monotonic profiles with time. Thus,
they exclude many important fermentations that show time-
dependent oscillations in continuous cultures. Two of the
best known in this class areZymomonas mobilisandSaccha-
romyces cerevisiae, with the latter being possibly the most in-
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ensively studied and industrially important. So, in this w
e investigate the ability of an extended Kalman filte

ecreate the original noise-free behavior in continuous
ures ofS. cerevisiaewhen the deterministic profiles are
onotonic or (b) oscillating or (c) chaotic.

. Continuous cultures ofS. cerevisiae

In view of its industrial importance and metabolic co
lexity, the yeastS. cerevisiaehas been studied by bi
hemists, microbiologists and biochemical engineers.
hemists and microbiologists have unraveled the mecha
nd causes of oscillations intrinsic to the cells. These inc

eatures such as cell synchrony[15], the presence of hydr
en sulfide[16] and oxidative phosphorylation[17]. While
evealing the metabolic complexities that are at the co
utonomous oscillations, these studies have also unde

he difficulties in formulating comprehensive models tha
ufficiently simple to manipulate in automatic control s
ems.

So, biochemical engineers have tried to blend judicio
umped metabolic models with bioreactor models that inc
perational features such as the flow rate (or dilution r

he rate of supply of oxygen and spatial heterogeneity.
odels proposed by Beuse et al.[18], Cazzador et al.[19] and

ones and Kompala[20] are of this kind. While the former tw
18,19] are based on proposed mechanisms and a che
inetic approach, Jones and Kompala adopted a cybe
pproach.
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In the context of bioreactors, cybernetic modeling estab-
lishes a formal framework according to the established evo-
lutionary concept that microorganisms try to follow those
metabolic pathways that are most favorable to their survival
under the prevailing conditions. It also hypothesizes that liv-
ing cells have at least some rudimentary ‘intelligence’ that
enables them to ‘remember’ their past experiences and ac-
cordingly react to current circumstances. Therefore, two cul-
tures of the same organism but with different histories are
likely to respond differently to the same conditions. Cyber-
netic modeling has been particularly useful in portraying the
dynamic behavior of fermentations with more than one kind
of cells and/or more than one substrate[21,22].

Owing to its simplicity, physiological closeness to known
metabolic concepts, and its ability to depict the observed
excursions between different kinds of oscillatory and non-
oscillatory behavior under changing conditions, the Jones-
Kompala model[20] was used here and in a preceding study
[23] to generate data mimicking a noise-affected fermenta-
tion and to study the performance of an extended Kalman
filter.

Jones and Kompala[20] identified three metabolic path-
ways by whichS. cerevisiaemay utilize the available carbon
sources: glucose fermentation, ethanol oxidation and glucose
oxidation. Depending on its past history and the current con-
ditions, the culture may follow either one pathway or two or
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is negative for stable or dissipating systems and positive for
chaotic systems. The effectiveness of the Lyapunov exponent
for detecting biological chaos has been demonstrated recently
[26] for S. cerevisiae. It may be noted that the chaotic plots
generated at this stage are deterministic since no noise has
yet been introduced.

Now, for each of the three types of profiles, Gaussian noise
with an adjustable variance and a mean equal to the current
deterministic value of the variable of interest was added to
the Jones and Kompala[20] model, which was then solved
again to obtain the noise-distorted profiles. Adjustability of
the variance implies here that this was increased stepwise
until the monotonic or oscillating profiles became chaotic.

3. Theory and application of the Kalman filter

The Kalman filter is a set of mathematical equations that
provides an efficient recursive solution of the least-squares
type. The filter can provide estimations of past, present and
future states of a system even when a precise model is not
known. This feature is useful for microbial processes under
nonideal (realistic) conditions because models developed on
laboratory data may become inapplicable or imprecise under
the influence of disturbances and spatial gradients[1,27].

The basic Kalman filter addresses the problem of trying
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ore pathways to different extents. The current condit
re mainly the dilution rate, the gas–liquid mass transfer
f oxygen and the degree of mixing of the broth. When the

nsufficient glucose,S. cerevisiaeshifts to ethanol as the ma
arbon source; while ethanol is synthesized under anae
onditions in batch cultures, it can be formed in certain ra
f the oxygen mass transfer rate in continuous cultures[24].

Jones and Kompala[20] determined that with increasin
ilution rate the deterministic (noise-free) oscillations
ayed in both amplitude and frequency, whereas the ox
ass transfer coefficient had the opposite effect. Explor
f a wider range of these two manipulated variables sh

hat, depending on the operating conditions, noise-free
inuous cultures ofS. cerevisiaemay display one of thre
inds of behavior: monotonic or stable oscillations or cha
scillations. When there is noise of sufficiently large inten

n the substrate feed stream, all three forms of ferment
ecome chaotic. An effective and useful extended Kal
lter should be able to restore substantially the original no
ree performance in all three cases.

Representative monotonic and stable oscillating pro
ere chosen from those determined by Jones and Kom

20]. In each case, two sets of profiles were chosen, on
he dilution rate and the other for the gas–liquid oxygen m
ransfer coefficient. Since Jones and Kompala did not pr
ny chaotic deterministic profiles, these were generated

her reducing the dilution rate or increasing the mass tra
oefficient. The onset of chaos was detected by calcul
he Lyapunov exponent at each stage. This exponent, w
asis and calculation have been described elsewhere[25],
o estimate the state ¯x of a discrete-time controlled proce
hat is governed by the linear difference equation:

k̄ = Āx̄k−1 + B̄uk + w̄k−1 (1)

ith a measurement vector that follows:

k̄ = H̄x̄k + v̄k (2)

n these and later equations, lower case letters with ove
enote vectors while similar capital letters denote matr
calars do not have overbars. (k− 1) is the current instant o

ime and k is the point one time-step ahead.w̄k andv̄k repre-
ent the process noise and measurement noise respec

Previous studies[27–29]show thatw̄k andv̄k may be rep
esented as white noise with normal probability distributio

(w) ∼ N(0, Q̄) (3)

(v) ∼ N(0, R̄) (4)

hereQ̄ andR̄ are the respective covariance matrices.
Since Eq.(1) applies to linear systems whereas many

enation (and other biological) processes show a nonl
ehavior, the extended Kalman filter (EKF) was develo

t applies to any nonlinear difference equation of the for

k̄ = f (x̄k−1, ūk, w̄k−1) (5)

k̄ = h̄(x̄k, v̄k) (6)

n principle, the EKF determines the current estimate
set of variables by linearizing the estimation around

urrent estimates using the partial derivatives of the pro
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and measurement functions evaluated at the (known) previous
instant of time. The detailed theory and equations are given in
the literature[4,30,31]. Note that both Eqs.(1) and (2)and(5)
and (6), in pairs, are in discrete form whereas most biological
processes are described by continuous models. This is not an
impediment because, in practice, data are sampled at discrete
points in time. Since the EKF allows any arbitrary variation
in the sampling interval, this may be varied according to the
nature of the process. For instance, the interval may be made
inversely proportional to the current concentration gradient,
thus generating closely spaced data when the variations are
steep and more widely separated points during mild variations
[14].

Earlier studies[14,29,32]have suggested that the feed
stream is a major carrier of noise in continuous and fed-batch
fermentations, and white noise is the principal component of
the observed fluctuations. So, to generate data simulating a
noise-influenced oscillating culture, the equations in the Ap-
pendix were solved with the parameter values used by Jones
and Kompala[20] (seeTable 1) and white noise specified
by Q̄ andR̄. Since the measurement covarianceR̄ pertains to
measurement noise in the unfiltered process, this is measured
prior to the operation of the filter. Then the application of the
filter determines how much this noise has been reduced. The
process noise covariancēQ is more difficult to determine
since typically we do not have the ability to observe the pro-
c
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Table 1
Values of the parameters[20]

Parameter Value

α (h−1) 1.0
α* (g h−1) 0.1
β (h−1) 0.2
γ1 (g g−1) 6.0
γ2 (g g−1) 6.0
γ3 (g g−1) 0.3
µ1,max (h−1) 0.44
µ2,max (h−1) 0.32
µ3,max (h−1) 0.31
ϕ1 (g g−1) 0.27
ϕ2 (g g−1) 1.067
ϕ3 (g g−1) 2.087
ϕ4 (g g−1) 0.95
D (h−1) 0.16
G0 (g L−1) 28.0
kLa (h−1) 1200.0
K1 (g L−1) 0.1
K2 (g L−1) 0.02
K3 (g L−1) 0.001
KO2 (mg L−1) 0.0001
KO3 (mg L−1) 0.0001
O* (mg L−1) 7.5
Y1 (g g−1) 0.16
Y2 (g g−1) 0.74
Y3 (g g−1) 0.50

equation for the Kalman gain̄Kk also gets updated with each
iteration, thereby speeding up convergence and improving the
accuracy of estimations. As explained before, data from the
simulated profiles were sampled at intervals inversely pro-
portional to the local concentration gradients, and the tuning
of the EKF was updated over successive intervals according
to the format inFig. 1.

4. Results and discussion

As mentioned earlier, representative values of the dilu-
tion rate (D) and the gas–liquid mass transfer rate of oxygen
(kLa) were chosen so as to have for each manipulated variable
a monotonic, a stable oscillating and a chaotically oscillat-
ing response of the fermentation. These values were 0.05,

ure of
ess we are estimating. So, based on previous studies[5,8,30],
¯ was set initially toQ̄d = ([0.0001. . . . . .0.0001]T) andR̄
o 0.003̄I, whereĪ is the identity matrix and̄Qd is a diagona
atrix. Note that these are starting values and are upda
ratively until the filtered profiles are within acceptable lim
f the noise-free profiles. Now, the model of Jones and K
ala[20] has eight concentrations, whose rates of chang
xpressed by Eqs.(A.6)–(A.11). SoQ̄ is an (8× 8) matrix.
ince the glucose and oxygen feed streams are the on
ows to the bioreactor, environmental noise was consid
o be present in these two flow rates, thus makingR̄ a (2× 2)
atrix. BothQ̄ andR̄ get updated recursively as shown
ig. 1 [31].

Apart from its applicability to a nonlinear process, an
ortant distinction between the EKF and the basic dis
alman filter is that in the former case the JacobianH̄k in the

Fig. 1. Computation proced
 the extended Kalman filter[31].
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0.13 and 0.20 h−1 for the dilution rate, and 175, 255 and
375 h−1 for the mass transfer coefficient. The three dilution
rates generate chaotic oscillations, stable periodic oscillations
and monotonic behavior respectively. These types of profiles
are reversed for the mass transfer coefficients, i.e. 375 h−1

results in a chaotic response.
Although the model of Jones and Kompala[20] has eight

state variables, results for four key concentrations are shown
and discussed here, similar to a recent study[33]. This choice
also takes care of the internal storage carbohydrate, whose
exponents were similar to those for ethanol. Lyapunov ex-
ponents computed at three dilution rates (Fig. 2) show that
at a low dilution rate (0.05 h−1), the fermentation remains
chaotic even after applying the EKF. This is expected because
the noise-free fermentation itself had deterministic chaos.
However, for the two larger dilution rates the EKF has ei-
ther fully stabilized the process or has substantially reduced
noise-induced chaotic behavior.

A similar performance is seen with respect to the mass
transfer coefficient for oxygen (kLa). At kLa= 375 h−1, the
culture remains chaotic, as it was before the influx of noise.
However, as for the dilution rate, stable performance has been
restored in all the cases except two. Including the results (not
shown) for internal carbohydrate, these observations show
that in 8 out of 10 cases where the noise-free culture was
s ored

stability after noise had disturbed the process to chaotic os-
cillation.

Figs. 2 and 3together depict 24 sets of bar plots cover-
ing three dilution rates and three mass transfer coefficients.
Twelve of these have been labeled in order to draw closer
attention. For low dilution rates (cases 1, 2, 4 and 5 inFig. 2)
and high mass transfer coefficients (cases 7, 9, 11 and 12
in Fig. 3) there is deterministic chaos since the exponents
for a fermentation without noise are also positive. In these
cases, an EKF cannot be expected to establish stable oscilla-
tions. However, its limitation is revealed more significantly
in four other cases (3, 6, 8 and 10), where the Lyapunov ex-
ponents of the deterministic oscillations are close to zero.
Such a system is marginally stable and a disturbance may
displace the trajectories such that they either stay at a con-
stant distance from the original noise-free paths or diverge
into a chaotic regime[25]. While the former possibility has
been observed for monotonic profiles, the Lyapunov expo-
nents determined here suggest that oscillating trajectories are
more likely to degenerate into chaos. The difference between
the exponents for a noise-free and a noise-filtered system pro-
vides a measure of this tendency. The results (Fig. 4) show
that for the four cases (3, 6, 8 and 10) where the noise-free
culture had steady oscillations with a constant time period,
the Lyapunov exponents with an EKF are within 20% of
their original values. However, the EKF has been less effec-

F
(
o

table (either monotonic or oscillating) the EKF has rest
ig. 2. Lyapunov exponents for a noise-affected fermentation without an
D= 0.13 h−1) and monotonic (D= 0.20 h−1) behavior without noise. In each s
n the left is with unfiltered noise, and the middle bar pertains to a fermentat
d with an EKF at dilution rates generating chaotic (D= 0.05 h−1), oscillating
et of bars, the one on the right is for a fermentation without noise, the bar
ion with noise filtered by an EKF.
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Fig. 3. Lyapunov exponents for a noise-affected fermentation without and with an EKF at mass transfer coefficients generating monotonic (kLa= 175 h−1),
oscillating (kLa= 255 h−1) and chaotic (kLa= 375 h−1) behavior without noise. In each set of bars, the one on the right is for a fermentation without noise, the
bar on the left is with unfiltered noise, and the middle bar pertains to a fermentation with noise filtered by an EKF.

tive in distinguishing between deterministic chaos and noise-
induced chaos, the differences here being about 40–65%. The
largest differences are for the dissolved oxygen concentra-
tion, which are much smaller in magnitude than the other
variables[15,18,20]. This suggests that low concentrations
are more difficult to rescue from the effects of noise than

Fig. 4. Differences between the Lyapunov exponents of the noise-free
and noise-filtered fermentations for each of the twelve cases labeled in
Figs. 2 and 3. Cases 1, 2, 4, 5, 7, 9, 11 and 12 pertain to deterministic
c

high concentrations. This overall inference is however em-
bedded in more complex phenomena involving the cell cycle,
the metabolic pathways, the population distribution and in-
terfacial oxygen transfer[15,17,20,34]. Because a model that
includes all these features becomes too cumbersome or com-
plex, engineering analyses are based, as stated in Section2,
on judiciously simplified models[18–20]. Even such a model
has indicated here that an algorithmic filter such as an EKF
may not ‘understand’ adequately the complexities of a noise-
affected microbial process. In such situations, filters that do
not depend on a process model may perform better. These
are the so-called ‘intelligent’ filters, which rely on methods
such fuzzy logic, neural networks and expert systems. For
example, an auto-associative neural filter is better than an
EKF and other algorithmic filters in restoring determinis-
tic oscillations from noise-distorted non-chaotic oscillations
[35]. Nevertheless, neural filters also have limitations and
sometimes a combination of the two may be preferable.

These differences in the effectiveness of an EKF are also
reflected in its ability to converge to the best performance
(i.e. as close as possible to that of a noise-free fermentation)
through successive iterations. This may be characterized by
the mean sum of squares of errors, defined as

MSSE(%)=
∑N

j=1(Xe
j − X

p
j )

2

× 100 (7)

haos.
 N
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whereXe
j andXp

j are respectively the ‘experimental’ (or sim-
ulated) and predicted values of a variable at thej-th sampling
point in time, andN is the total number of data. Since, as
revealed by their Lyapunov exponents (Figs. 3 and 4), the
biomass and ethanol concentrations are distorted by noise to
comparable extents and more severely than glucose and dis-
solved oxygen concentrations, either of the former two may
be used to compare the progress of the MSSE for different
situations. This comparison (Fig. 5) shows that the EKF is
most efficient for deterministic monotonic profiles, less so for
steady oscillations and, as expected, the least efficient when
both deterministic and noise-induced chaos are present. Nev-
ertheless, it is encouraging to note that an EKF can restore
nearly noise-free performance even in the last case.

It may be recalled that the Lyapunov exponent is a mea-
sure of the mean deviation between two trajectories. So, to
determine whether the deviations without and with an EKF
are correlated, Pearson’s product moment correlations were
calculated as described by Fisher[36]. The correlation be-
tween two variables X and Y is defined as

ρx,y = cov(X, Y )

var(X)var(Y )
(8)

where var stands for variance and cov for covariance.
In our applications,X is the set of noise-free values of

any concentration andY the set of noise-affected values, ei-
t me,

Fig. 5. Convergence profiles for an EKF applied separately to a fermentation
under three kinds of deterministic behavior. MSSE: mean sum of squares of
errors.

every concentration has an unfiltered value and a filtered
value, the correlation coefficients between different concen-
trations generate the matrix presented asTable 2. Since the
bioreactor may have any one of three modes of determinis-
tic operation—monotonic, oscillating and chaotic—there are
correlation coefficients between each pair of variables.

T
P concentrations in their unfiltered and filtered states

V Biomass Dissolved oxygen Ethanol

Unfiltered Filtered Unfiltered Filtered Unfiltered Filtered

G 0.139 0.125 0.128 0.120 0.149 0.138
0.123 0.114 0.119 0.111 0.133 0.119
0.109 0.101 0.112 0.103 0.124 0.101

G 0.121 0.127 0.122 0.130 0.140 0.147
0.113 0.121 0.116 0.125 0.118 0.130
0.106 0.114 0.110 0.117 0.106 0.118

B 1.0 0.999 0.141 0.132 0.187 0.145
1.0 0.999 0.129 0.121 0.175 0.133
1.0 0.999 0.117 0.113 0.166 0.122

B 0.999 1.0 0.138 0.151 0.182 0.194
0.999 1.0 0.123 0.139 0.173 0.183
0.999 1.0 0.109 0.126 0.162 0.170

D 0.141 0.138 1.0 0.991 0.159 0.137
0.129 0.123 1.0 0.986 0.145 0.124
0.117 0.109 1.0 0.979 0.133 0.111

D 0.1 163
0.12 0
0.11 9

E 0.1 93
0.17 9
0.16 4

E

her without or with an EKF. Since, at each sampling ti

able 2
earson’s product moment correlation coefficients between different

ariable Modea Glucose

Unfiltered Filtered

lucose (unfiltered) m 1.0 0.993
o 1.0 0.985
c 1.0 0.976

lucose (filtered) m 0.990 1.0
o 0.983 1.0
c 0.976 1.0

iomass (unfiltered) m 0.139 0.121
o 0.123 0.113
c 0.109 0.106

iomass (filtered) m 0.125 0.127
o 0.114 0.121
c 0.101 0.114

issolved oxygen (unfiltered) m 0.128 0.122
o 0.119 0.116
c 0.112 0.110

issolved oxygen (filtered) m 0.120 0.130
o 0.111 0.125
c 0.103 0.117

thanol (unfiltered) m 0.149 0.140
o 0.133 0.118
c 0.124 0.106
thanol (filtered) m 0.138 0.147 0.14
o 0.119 0.130 0.13
c 0.101 0.118 0.12

a m: monotonic; o: oscillating; c: chaotic.
32 0.151 0.991 1.0 0.143 0.
1 0.139 0.986 1.0 0.132 0.15
3 0.126 0.979 1.0 0.121 0.13

87 0.182 0.159 0.143 1.0 0.9
5 0.173 0.145 0.132 1.0 0.98
6 0.162 0.133 0.121 1.0 0.98

5 0.194 0.137 0.163 0.993 1.0

3 0.183 0.124 0.150 0.989 1.0
2 0.170 0.111 0.139 0.984 1.0
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The presence of unity in all elements of three-vectors along
the diagonal is expected since any variable will be fully cor-
related with itself. Large correlation coefficients approach-
ing unity also connect unfiltered and filtered values of the
same variable. This too is physically plausible, given that
the pair of variables represent the same concentration. All
other coefficients are small, indicating the absence of any
significant correlation between one concentration and an-
other. These small correlations corroborate the independence
of the concentrations in the Jones and Kompala[20] model,
and thus Eqs.(A.6)–(A.11)are also independent. Finally, it
may be observed that for any variable, its unfiltered value
has a higher correlation with the unfiltered value of another
variable than with the filtered value of the latter, regardless
whether the fermentation displays monotonic or oscillating or
chaotic behavior. The same pattern also occurs for all filtered
variables. This interesting segregation into two groups with
internal consistency strengthens the reliability of the EKF in
different situations, but it is difficult to attribute a stronger
interpretation.

5. Conclusions

For continuous fermentation byS. cerevisiaeunder deter-
ministic conditions that generate stable periodic oscillations,
t ring
o oise-
f d al-
r ono-
t has
e riven
t

vali-
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j Three
s and
( f the
d t for
o nt of
r oise
w relat-
i ith
fi

ight
o ating
p v ex-
p 20%
o ever,
t ced
c for-
m on
w are
n under
n ys-
t may

be an answer. To overcome some of the limitations of ‘in-
telligent’ filters, they may be combined with partial mathe-
matical descriptions and algorithmic filters to create hybrid
filters.

Appendix A. The cybernetic model of Jones and
Kompala [20]

Depending on the prevailing conditions,S. cerevisiaemay
follow any one of three metabolic pathways. The rate of
growth ri along each pathway follows modified Monod ki-
netics, as given below:

Glucose fermentation

r1 = µ1e1

(
G

K1 + G

)
(A.1)

Ethanol oxidation

r2 = µ2e2

(
E

K2 + E

)(
O

KO2 + O

)
(A.2)

Glucose oxidation

r3 = µ3e3

(
G

K3 + G

)(
O

KO3 + O

)
(A.3)

The pathways are not mutually exclusive and, at a given
i ays
a key
e
f

u

v

W ous
fl

he EKF has been shown recently to be effective in filte
ut noise from the feed stream such that approximately n

ree oscillations can be recovered. Previous studies ha
eady proved this effectiveness for fermentations with m
onic time-domain concentration profiles. So, this study
xtended earlier work to sustained oscillations that are d
o chaos under the influence of noise.

Computer-generated data from an experimentally
ated cybernetic model of a continuous culture were

ected to Gaussian noise in the substrate feed stream.
ets of data were generated – monotonic, oscillating
deterministic) chaotic – by choosing suitable values o
ilution rate or the gas–liquid mass transfer coefficien
xygen. To each set, an EKF was applied and the exte
ecovery of the performance prior to the intrusion of n
as measured by calculating the Lyapunov exponents

ng pairs of concentration profiles without noise and w
ltered noise.

The EKF restored nearly noise-free performance in e
ut of ten cases where this was either monotonic or oscill
eriodically. For the two exceptional cases, the Lyapuno
onents of the noise-filtered fermentations were within
f those of the corresponding noise-free cultures. How

he EKF was less effective in distinguishing noise-indu
haos from deterministic chaos, to filter out only the
er. This limitation may lie in the process model itself,
hich the EKF depends. Since very complex models
ot desirable and simple models may be inadequate
onideal conditions, ‘intelligent’ filters based on expert s

ems and neural networks that do not require a model
nstant, the organism may follow two or more pathw
t different rates. Each pathway is controlled by a
nzymeei , with synthesis rateui and activity vi, which

ollow:

i = ri∑
jrj

(A.4)

i = ri

maxjrj
(A.5)

ith Eqs.(A.1)–(A.5), the mass balances for a continu
ow bioreactor may be written as follows:

dX

dt
=
(∑

i

(rivi) − D

)
X (A.6)

dG

dt
= (G0 − G)D −

(
r1v1

Y1
+ r3v3

Y3

)
X

−ϕ4

(
C

dX

dt
+ X

dC

dt

)
(A.7)

dE

dt
= −DE +

(
ϕ1

r1v1

Y1
− r2v2

Y2

)
X (A.8)

dO

dt
= kLa(O∗ − O) −

(
ϕ2

r2v2

Y2
+ ϕ3

r3v3

Y3

)
X (A.9)

dei
dt

= αui

(
Si

Ki + Si

)
−

∑

j

(rjvj) + β


 ei + α∗ (A.10)
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dC

dt
= γ3r3v3 − (γ1r1v1 + γ2r2v2)C −

∑
j

(rjvj)C (A.11)

Inclusion of the termα* in the enzyme synthesis Eq.(A.10)
is based on Turner and Ramkrishna[37], who have shown its
importance in predicting the induction of enzymes that have
been repressed for long durations. The specific growth rates
thus also includeα* in the model:

µi = µi,max

(
µi,max + β

α + α∗

)
(A.12)

Eq.(A.11)expresses the rate of change of internal storage car-
bohydrates that are an integral part of the metabolism[24,34].

Theϕi are the stoichiometric coefficients for different sub-
stratesSi , andγ i are similar coefficients for carbohydrate
synthesis and consumption by the cells. Jones and Kompala
[20] may be consulted for a full discussion of the model. A
point not clarified there is the identification ofS1, S2 andS3.
Reference to Eqs.(A.1)–(A.3)shows thatS1 =G, S2 =E and
S3 =G. This identification is needed to solve the model. The
values of the parameters are listed inTable 1.
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